Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-624370.v1

ABSTRACT

A worldwide effort is ongoing to discover drugs against the Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2), which has so far caused >3.5 million fatalities (https://covid19.who.int/). The virus essential RNA-dependent RNA polymerase complex is targeted by several nucleoside/tide analogues whose mechanisms of action and clinical potential are currently evaluated. The guanosine analogue AT-527, a double prodrug of its 5'-triphosphate AT-9010, is currently in phase III clinical trials as a COVID19 treatment. Here we report the cryo-EM structure at 2.98 Å resolution of the SARS-CoV-2 nsp12-nsp7-(nsp8)2 complex with RNA showing AT-9010 bound at three sites of nsp12. At the RdRp active-site, one AT-9010 is incorporated into the RNA product. Its 2'-methyl group prevents correct alignment of a second AT-9010 occupying the incoming NTP pocket. The 2'-F, 2'-methyl 3'-OH ribose scaffold explains the non-obligate RNA chain-termination potency of this NA series for both HCV NS5 and SARS-CoV RTCs. A third AT-9010 molecule 5'-diphosphate binds to a coronavirus-specific pocket in the nsp12 N-terminus NiRAN domain, a SelO pseudo-kinase structural and functional homologue. This unique binding mode impedes NiRAN-mediated UMPylation of SARS-CoV-2 nsp8 and nsp9 proteins. Our results suggest a mechanism of action for AT-527 in line with a therapeutic use for COVID19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436564

ABSTRACT

How viruses from the Coronaviridae family initiate viral RNA synthesis is unknown. Here we show that the SARS-CoV-1 and -2 Nidovirus RdRp-Associated Nucleotidyltransferase (NiRAN) domain on nsp12 uridylates the viral cofactor nsp8, forming a UMP-Nsp8 covalent intermediate that subsequently primes RNA synthesis from a poly(A) template; a protein-priming mechanism reminiscent of Picornaviridae enzymes. In parallel, the RdRp active site of nsp12 synthesizes a pppGpU primer, which primes (-)ssRNA synthesis at the precise genome-poly(A) junction. The guanosine analogue 5'-triphosphate AT-9010 (prodrug: AT-527) tightly binds to the NiRAN and inhibits both nsp8-labeling and the initiation of RNA synthesis. A 2.98 A resolution Cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-(nsp8)2 /RNA/NTP quaternary complex shows AT-9010 simultaneously binds to both NiRAN and RdRp active site of nsp12, blocking their respective activities. AT-527 is currently in phase II clinical trials, and is a potent inhibitor of SARS-CoV-1 and -2, representing a promising drug for COVID-19 treatment.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.11.242834

ABSTRACT

AT-527, an orally administered double prodrug of a guanosine nucleotide analog, has been shown previously to be highly efficacious and well tolerated in HCV-infected subjects. Herein we report the potent in vitro activity of AT-511, the free base form of AT-527, against several coronaviruses, including SARS-CoV-2, the causative agent of COVID-19. In normal human airway epithelial (HAE) cell preparations, the average concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.5 {micro}M, very similar to the EC90 for AT-511 against HCoV-229E, HCoV-OC43 and SARS-CoV in Huh-7 cells. No cytotoxicity was observed for AT-511 in any of the antiviral assays up to the highest concentration tested (100 {micro}M). Surprisingly, AT-511 was 30-fold less active against MERS-CoV. This differential activity may provide a clue to the apparent unique mechanism of action of the guanosine triphosphate analog formed from AT-527.


Subject(s)
COVID-19 , Hepatitis C , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions
SELECTION OF CITATIONS
SEARCH DETAIL